这是代码:
\documentclass[a4paper,12pt]{ctexart}
\usepackage{geometry}
\geometry{left=3cm,right=3cm,top=2.5cm,bottom=2.5cm}
\usepackage{amsmath}
\newcommand{\score}[1]{\textbf{#1分}}
\newcommand{\myitem}[1]{\item[\textbf{\stepcounter{enumi}\chinese{enumi}、(#1分)}]}
\begin{document}
\section{第一题}
\begin{enumerate}
\myitem{10} 证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
\end{enumerate}
\end{document}
想要对齐
请求大佬们帮忙,感谢感谢!!!
\documentclass[a4paper,12pt]{ctexart}
\usepackage{geometry}
\geometry{left=3cm,right=3cm,top=2.5cm,bottom=2.5cm}
\usepackage{amsmath}
\usepackage{calc}
\newcommand{\score}[1]{\textbf{#1分}}
\newcommand{\myitem}[1]{
\setlength{\itemindent}{\widthof{\textbf{\stepcounter{enumi}\chinese{enumi}、(#1分)}}}%
\addtolength{\itemindent}{\labelsep}%
\addtocounter{enumi}{-1}
\item[\textbf{\stepcounter{enumi}\chinese{enumi}、(#1分)}]
}
\begin{document}
\section{第一题}
\begin{enumerate}
\myitem{10} 证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
\myitem{1} 证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
\myitem{10000000000} 证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
\end{enumerate}
\end{document}
既然要对齐,自定义一个环境反而更简单。
\documentclass[a4paper,12pt]{ctexart}
\usepackage{geometry}
\geometry{left=3cm,right=3cm,top=2.5cm,bottom=2.5cm}
\usepackage{amsmath}
\usepackage{zhnumber}
%----- definition of problem environment -----%
\newcounter{thecounter}
\newenvironment{problem}[1][]{
\stepcounter{thecounter}
\par\noindent
\textbf{\zhnum{thecounter}、(#1分)}
}{
\par\medskip
}
\begin{document}
\section{第一题}
\setcounter{thecounter}{0}
\begin{problem}[10]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
\end{problem}
\begin{problem}[5]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
\end{problem}
\section{第二题}
\setcounter{thecounter}{0}
\begin{problem}[10]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
\end{problem}
\begin{problem}[10000]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
\end{problem}
\end{document}
把证明对其一点,估计更好看代码如下:
documentclass[a4paper,12pt]{ctexart}
usepackage{geometry}
geometry{left=3.17cm,right=3.17cm,top=2.54cm,bottom=2.54cm}
usepackage{amsmath}
usepackage{calc}
usepackage{zhnumber}%自定义环境“problem”,中文数字表示需要。
%一下为自定义环境problem
%----- definition of problem environment -----%
newcounter{thesucounter}
newenvironment{problem}[1][]{
\stepcounter{thesucounter}
\par\noindent
\makebox[25mm][l]{\textbf{\zhnum{thesucounter}、【#1分】}}
}{
\par\vspace{8mm}%生成一段高度为12pt plus 4pt minus 4pt 德垂直空白。
}
begin{document}
section{第一题}
setcounter{thesucounter}{0}
begin{problem}[5]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
end{problem}
begin{problem}[10]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
end{problem}
begin{problem}[5]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
end{problem}
begin{problem}[20]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
end{problem}
begin{problem}[5]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
end{problem}
begin{problem}[10]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
end{problem}
begin{problem}[5]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
end{problem}
begin{problem}[20]
证明 Rolle 定理:如果函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,在开区间 $(a, b)$ 上可导,并且 $f(a) = f(b)$,那么存在至少一个$c\in (a, b)$,使得 $f'(c) = 0$。
end{problem}
end{document}
感谢感谢!!!