补充一个测试记录:
以论文「Magnetic and mechanical hardening of nano-lamellar magnets using thermo-magnetic fields」为例
Step 1. 打开Nature官方链接:https://www.nature.com/articles/s41467-025-57571-6
Step 2. 找到「Cite this article」,点击下载「Download citation」将得到与你展示相同的一个「.ris」文件

『注意到上述示例的引用方式使用了「Article Number=2423」』
Step 3. 导入「Zotero」后使用原生的「bibtex」导出分类

这将得到如下的「refs.bib」文件:
@article{hanMagneticMechanicalHardening2025,
title = {Magnetic and mechanical hardening of nano-lamellar magnets using thermo-magnetic fields},
volume = {16},
issn = {2041-1723},
url = {https://doi.org/10.1038/s41467-025-57571-6},
doi = {10.1038/s41467-025-57571-6},
abstract = {High-performance magnetic materials based on rare-earth intermetallic compounds are critical for energy conversion technologies. However, the high cost and supply risks of rare-earth elements necessitate the development of affordable alternatives. Another challenge lies in the inherent brittleness of current magnets, which limits their applications for high dynamic mechanical loading conditions during service and complex shape design during manufacturing towards high efficiency and sustainability. Here, we propose a strategy to simultaneously enhance the magnetic and mechanical performance of a rare-earth-free multicomponent magnet. We achieve this by introducing nano-lamellar structures with high shape anisotropy into a cobalt–iron–nickel–aluminum material system through eutectoid decomposition under externally applied thermo-magnetic fields. Compared to the conventional thermally activated processing, the thermo-magnetic field accelerates phase decomposition kinetics, producing finer lamellae spacings and smaller eutectoid colonies. The well-tailored size, density, interface, and chemistry of the nano-lamellae enhance their pinning effect against the motion of both magnetic domain walls and dislocations, resulting in concurrent gains in coercivity and mechanical strength. Our work demonstrates a rational pathway to designing multifunctional rare-earth-free magnets for energy conversion devices such as high-speed motors and generators operating under harsh service conditions.},
language = {en},
number = {1},
journal = {Nature Communications},
author = {Han, Liuliu and Wang, Jin and Peter, Nicolas J. and Maccari, Fernando and Kovács, András and Schwaiger, Ruth and Gutfleisch, Oliver and Raabe, Dierk},
month = mar,
year = {2025},
pages = {2423},
}在zotero的策略下,默认将其保留为字段「pages」
Step 4 测试o( ̄▽ ̄)ブ 对于如下的MWEB:
\documentclass{article}
\usepackage{libertinus}
\usepackage[style=nature]{biblatex}
\begin{filecontents*}[overwrite]{refs.bib}
@article{hanMagneticMechanicalHardening2025,
title = {Magnetic and mechanical hardening of nano-lamellar magnets using thermo-magnetic fields},
volume = {16},
issn = {2041-1723},
url = {https://doi.org/10.1038/s41467-025-57571-6},
doi = {10.1038/s41467-025-57571-6},
abstract = {High-performance magnetic materials based on rare-earth intermetallic compounds are critical for energy conversion technologies. However, the high cost and supply risks of rare-earth elements necessitate the development of affordable alternatives. Another challenge lies in the inherent brittleness of current magnets, which limits their applications for high dynamic mechanical loading conditions during service and complex shape design during manufacturing towards high efficiency and sustainability. Here, we propose a strategy to simultaneously enhance the magnetic and mechanical performance of a rare-earth-free multicomponent magnet. We achieve this by introducing nano-lamellar structures with high shape anisotropy into a cobalt–iron–nickel–aluminum material system through eutectoid decomposition under externally applied thermo-magnetic fields. Compared to the conventional thermally activated processing, the thermo-magnetic field accelerates phase decomposition kinetics, producing finer lamellae spacings and smaller eutectoid colonies. The well-tailored size, density, interface, and chemistry of the nano-lamellae enhance their pinning effect against the motion of both magnetic domain walls and dislocations, resulting in concurrent gains in coercivity and mechanical strength. Our work demonstrates a rational pathway to designing multifunctional rare-earth-free magnets for energy conversion devices such as high-speed motors and generators operating under harsh service conditions.},
language = {en},
number = {1},
journal = {Nature Communications},
author = {Han, Liuliu and Wang, Jin and Peter, Nicolas J. and Maccari, Fernando and Kovács, András and Schwaiger, Ruth and Gutfleisch, Oliver and Raabe, Dierk},
month = mar,
year = {2025},
pages = {2423},
}
\end{filecontents*}
\addbibresource{refs.bib}
\begin{document}
hello\cite{hanMagneticMechanicalHardening2025}, world!
\printbibliography
\end{document}将得到:

官网下效果对比(我不太确定官网是不是就是style=nature...可能还需要一些biblatex选项...)

另附「谷歌学术镜像」导出的refs.bib文件:
@article{han2025magnetic,
title={Magnetic and mechanical hardening of nano-lamellar magnets using thermo-magnetic fields},
author={Han, Liuliu and Wang, Jin and Peter, Nicolas J and Maccari, Fernando and Kov{\'a}cs, Andr{\'a}s and Schwaiger, Ruth and Gutfleisch, Oliver and Raabe, Dierk},
journal={Nature Communications},
volume={16},
number={1},
pages={2423},
year={2025},
publisher={Nature Publishing Group UK London}
}也许找到稳定、靠谱的.bib源是一种智慧,也需要运气...
好像没有回答原始问题:
Article number (不是 pages) 在 BibTeX (bib) 参考文献应该如何表示?
「是否应该」应该是「参考文献的目录是否符合预期」的意思?
从上面例子来看,即使设置为「Pages」,对于「nature」样式,这个「article number」的表现是符合预期的。
注意到在 RIS 文件中 Article number 被放到了 SP 字段(如下),这个字段的含义大概是 start page。这应该也是错误的。
个人觉得不太应该怀疑 Nature 官网导出的.ris文件...根据wikipedia「https://en.wikipedia.org/wiki/RIS_(file_format)」的「RIS规范说明」,应该不算「错误」...我没进一步深入搜索了...

如果利用doi2bib工具,则会发现参考文献中没有Article number 2423
那我感觉是doi2bib的锅... 你可能是想报告doi2bib工具的bug? 新建issues
这是来自于 2020-2021 年的问题,当时没有妥善解决
如果当时有记录的链接,应该添加到这个页面,毕竟信息更多总是更方便后续查找的





















问 Article number (不是 pages) 在 BibTeX (bib) 参考文献应该如何表示?