\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc,arrows.meta}
\usepackage{tkz-euclide}
\usepackage{xparse}
\usepackage{xstring}
\input{centroid_label.tex}%https://www.latexstudio.net/index/details/index/mid/4611.html
\begin{document}
\begin{tikzpicture}[scale=0.4]
%用面积条件计算得到 BD, AB 的长度
\edef\lenBD{\fpeval{sqrt(30)}}
\edef\lenAB{\fpeval{100/(sqrt(10)*3)}}
\let\lenBE\lenBD
\let\lenBC\lenAB
%已知 BG= BD
\let\lenBG\lenBD
\edef\lenAG{\fpeval{\lenAB-\lenBG}}
%余弦定理计算 AD
\edef\lenAD{\fpeval{sqrt(\lenBD*\lenBD+\lenAB*\lenAB-2*\lenBD*\lenAB*cosd(60))}}
%三角形 AGD 相似于三角形 AFB, 计算 AF
\edef\lenAF{\fpeval{\lenAG*\lenAB/\lenAD}}
%余弦定理计算 CE, 角 BCE
\edef\lenCE{\fpeval{sqrt(\lenBD*\lenBD+\lenAB*\lenAB-2*\lenBD*\lenAB*cosd(120))}}
\edef\angleBCE{\fpeval{acosd((\lenCE*\lenCE + \lenAB*\lenAB - \lenBD*\lenBD)/(2*\lenCE*\lenAB))}}
\coordinate (C) at(0,0);
\coordinate (E) at(\lenCE,0);
\coordinate (B) at(\angleBCE:\lenBC);
\coordinate (A) at($(B)!1!-90:(C)$);
\coordinate (D) at($(B)!1!90:(E)$);
\coordinate (G) at($(B)!\lenBG cm!(A)$);
\coordinate (F) at($(A)!\lenAF cm!(D)$);
\draw (A) -- (C) -- (E) -- (D) -- cycle;
\draw (B) edge (A) edge (C) edge (E) edge (D) edge (F);
\draw (G) edge (D) edge (F);
\LabelPts{A,B[-100],C,D,E,F,G[200]}
\coordinate (H) at($(G)!(A)!(F)$);
\draw (A) -- (H) node[anchor=240]{$H$};
\tkzCalcLength(A,H)
\tkzGetLength{lenAH}
%显示 AH 的长度
\node at (0,8) {$AH=\lenAH$};
\end{tikzpicture}
\end{document}
问 tkz-euclide 宏包中如何获取未知角的度数并用在另一个角的绘制中